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Aircraft measurements are being carried out over the MOBY (Marine Optical Buoy) and the
HOT (Hawaii Ocean Time-Series) sites near Hawaii to test/validate EOS-AM1 satellite algorithms. The
aircraft measurements include a suite of innovative radiation and aerosol measurements, which
determine the aerosol optical properties and their radiative effects. All of the measurements carried out
will be submitted to the NASA SeaBass archive for use by diverse ocean optics investigators within 2-4
months after measurements. The calibrated data sets, and data plots, are also placed on our web page
(http://www.soest.hawaii.edu/porter) where they can be download.

The various instruments used are mounted on dedicated aircraft doors and are installed on the
light aircraft prior to flight. Removing the original aircraft door and replacing them with our
instrumented doors takes approximately 30 min. This approach requires little or no modification to the
plane and could be used anywhere around the world provided the proper plane can be found. We use a
Piper Seneca aircraft, which is fairly common throughout the world. The Seneca plane can climb up to
16,500 feet (~5.5 km) allowing us to climb well above the trade wind inversion (~2.1 km) over Hawaii.
Although we will not fly for long durations at these heights, an oxygen tank has been purchased and is
used for the pilot and crew when high altitude flights are carried out. The plane has six seats and the
center two seats are removed for installation of the scientific equipment. As this plane is routinely used
for training, the FAA must first approve any modifications. In the front door we have installed an
aerosol inlet and exhaust venturi. In the back two doors we have installed the radiation equipment.

During the month of May three flights were carried out (May, 9, 11, 29, 1999). The flights were
coordinated to fly over the Moana Wave RV during the monthly HOT (Hawaii Ocean Time-Series)
cruises. The HOT measurements are made at a site ~100 km north of Oahu where chemical and
biological measurement have been made for more than a decade. As part of the SIMBIOS program, in
water and above water optical measurements are being made on each cruise. Flights over the MOBY are
planned for late July to coordinate with ship cruises to that site.

Aircraft flights are designed to fly over the ship or buoy at altitude for 20 minutes, then descend
at the time of the satellite overpass and make additional low level measurements for 20 more minutes.
The high level and low level measurements are designed to cover 4-6 square km allowing us to obtain a
larger statistical sample, which is representative of the area seen by the satellite. The high and low level
flight tracks are flown along the satellite azimuth viewing angle (and at 180 degrees to it) in order to
have the same viewing angle as the satellite for our scanning radiometer (described below). The aircraft
descends in a spiral over the ship or buoy. The descent takes 10-15 minutes depending on altitude which
allows for measurements during the descent and protects the engine. Figure 1 (left panel) shows an
image of the Moana Wave RV as we descended on the May 9, 1999 flight. The figure 1, right panel, is
an image of a thin layer of pollution seen at 2-3 km. This air pollution is most likely from long-range
transport and the frequency; concentration and optical properties of this large-scale aerosol are of
concern for satellite retrievals and climate change issues. The HAT (Hawaii Aircraft Time-Series)
measurements we are performing will help to define and better model their properties.



Figure 1. An image of the Moana Wave taken on HOT cruise 105 (May 9, 1999). The right panel image
shows a weak pollution layer found on this flight above the ship near 3.3 km altitude. Notice the near
perfect cloud free conditions.

AEROSOL OPTICAL DEPTHS
Aerosol optical depths measurements are made on each flight using a hand held MicroTops sun
photometer. Aerosol optical depth measurements are made at 440, 500, 675 and 870 nm. An additional
channel is used to derive water vapor at 935 nm. Pointing the sun photometer at the sun from a moving
platform is difficult and requires careful error screening (Porter et al., 1999). This has been applied to
the data and preliminary examples are given in Figure 2 and 3. It can be seen that above the inversion
the column-integrated water vapor and the aerosol optical depth are low while below the inversion they
increase as expected. The water vapor measurements are fairly typical of trade wind days with
suppressed cloud activity. Similar MicroTops water vapor and aerosol measurements have been
collected on the Moana Wave each month as part of the SIMBIOS effort for the past year (see
http://www.soest.hawaii.edu/porter/simbios.htm).  The MicroTops sunphotometer used on the aircraft is
calibrated at the Mauna Loa Observatory and by the SIMBIOS effort (linked to the Aeronet network).
Currently the unit has drifted from acceptable calibration and a calibration effort is planned for late June.

SCANNING UPWELLING RADIANCE
A scanning radiance sensor has been built into the aircraft door and is working well. The system

uses a fiber optic cable and collection optics to bring light to a spectrometer which covers the range from
380 to 1060 nm with ~1800 channels and ~1 nm FWHM. The sensor field of view is ~2.5 degrees and
scans from 0 to 60 degrees nadir. The scanner position is determined with an absolute position encoder



Figure 2. Left panel shows integrated water vapor above the plane measured with a hand held
MicroTops sun photometer. These HAT01 (Hawaii Aircraft Time-Series) measurements were taken on
May 29, 1999. The thin line shows the aircraft altitude and the dots show the integrated water vapor
above the plane. Right panel shown aerosol optical depths at 870 nm collected on HAT01 (May 9, 1998)
and HAT03 (May 28, 1999) flights. The values shown here are preliminary. Final calibration will be
carried out in June-July 1999.

to better than 0.1 degrees. The spectro-photometer measurements are auto scaling to ensure good signal
to noise without saturation. Radiometric calibration is obtained with a NIST traceable Optronics
integrating sphere and additional comparisons were recently made at the MOBY calibration facility.
Good aircraft measurements were made on the May 11 and May 29 1999 flights. We have just
completed wavelength calibration and will be within 0.4 nm wavelength accuracy. Intensity calibration
is now being carried out. Once these calibration efforts have been completed, the aircraft attitude will be
used to calculate the azimuth and zenith angles. These data are now being processed for recent flights.

DOWNWELLING AND UPWELLING FLUX
Downwelling and upwelling flux measurements are made with broadband pyranometers

(Kipp&Zonen) and with a spectro-photometers which covers the range from 400 to 950 nm with ~1700
channels and ~1nm FWHM. These instruments are mounted on our aircraft door and are above and
below the majority of the plane (see Fig. 3). The aircraft GPS (described below) is used to determine
when the aircraft is not level and the measurements are not valid. Our cosine response diffuser is
constructed with a spectralon diffuser. Tests of the cosine response have shown good results although
further tests are needed to cover a range of wavelengths. A trip to the Mauna Loa observatory is planned
for this purpose in early July 1999. Absolute irradiance calibration is obtained with a NIST traceable
irradiance lamp. Cross calibrations were also recently carried out at the MOBY calibration facility
(thanks to Mike Fienholts and Dennis Clark). Good aircraft flux measurements were made on the May
11 and May 29 flights. Wavelength calibration has been completed and absolute calibration for the data
sets are now being worked now. A preliminary spectral flux measurement data set is shown in Figure 3.



Figure 3. An image of our back two doors. The smaller rear door has upwelling and downwelling
irradiance measurements mounted on an aircraft strut. The irradiance measurements include broad band
and spectral measurements. The scanning radiometer can also be seen as a cylinder above the letter N.
Right panel shows uncalibrated upwelling and downwelling irradiance measurements from a recent
flight above the inversion and at the surface. The large dip in the center is due to the change in order
sorting filter and is not real.

DOWNWARD LOOKING CAMERA
A scientific grade 14 bit camera (with temperature control) is mounted in the bottom of the plane

and views the ocean surface. Four filters are mounted in a filter wheel and are cycled with automatic
scaling of the integration time by the computer. Flat field correction is carried out to correct for
vigneting effects. Radiometric calibration is obtained using our NIST traceable integrating sphere, which
is also compared with the MOBY facility calibration. Unfortunately this system was broken for the May
flights but has now been repaired and is ready for future flights.

AIRCRAFT DIFFERENTIAL-SURVEY GPS.
We have installed a differential-survey GPS system on the aircraft to determine the pitch,

heading, and position. The four antennae system can determine the aircraft attitude to within less than
0.1 degrees. The position is within ~150 m due to noise in the GPS signal. Using ground based GPS
sensors the position can be corrected to within 1 cm for every km away from the ground GPS sensor.
For our HOT measurements we expect the final error will be ~150 cm once the ground unit is used
(courtesy of Dr. Mike Bevis). The software to carry out these calculations was purchased with the
system. GPS data was collected on all three flights during May and are being processed now.

7) AEROSOL PHASE FUNCTION MEASUREMENTS
The aerosol phase function is a critical parameter for many atmospheric radiative problems. Typically
MIE theory is used to calculate the phase function although it is known that it is difficult to apply for
complex aerosol (i.e. dust, soot and other organic aerosol). Vertical measurements of the aerosol phase
function would therefore be very useful in determining the optical properties of dust and sulfate/soot
aerosol mixtures. Through support from this NASA EOS cal-val effort and the SIMBIOS effort we have
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developed a prototype polar nephelometer to measure the aerosol phase function. This system was tested
at Bellows Beach in salt spray aerosol. The aerosol phase function measurements were in close
agreement with MIE theory for a salt aerosol model (Porter et al., 1998, Porter and Clarke, 1997). We
are currently developing a 2 wavelength version for use on aircraft and in water. The new design uses a
pulsed laser with three wavelengths (1064, 532, 355 nm). The detectors have been built and tested for
the 532 nm channel. As time and funding permits, we are planning to add the 1064 and 355 nm detectors
to the system. The aircraft design for the 532 nm system has been finalized and is now being drawn up
for FAA approval before construction. The new system will be mounted on the aircraft door and will
measure the angular scatter from 3-177 degrees. The combined phase function can be integrated to
obtain the total scattering coefficient. An example of the beach measurements is shown in figure 4.

Figure 4. Left panel shows five phase function measurements made at Bellows Beach directly
downwind from breaking waves. The phase function is strongly peaked in the forward direction and has
an indication of a rainbow at 145 degrees. The right panel shows the aerosol scatter at one angle during
the time the aerosol phase function measurements were made. As expected the aerosol scatter is quite
variable downwind of breaking waves.

SKY RADIANCE
Multi-wavelength sky and surface radiance measurements will be made with a custom hand held
spectro-photometer. These measurements will help to characterize the aerosol optical properties by
measuring the solar aureole and applying aerosol models. The aureole measurements will be made as a
function of height to study the vertical distribution of aerosol optical properties. This system is being
worked on this month by a technician and is very close to completion. We expect to have it working by
late summer.

IN SITU AEROSOL MEASUREMETS
The in-situ aerosol measurements since our report last year were interrupted for about 6 months

due to two major international field project.  We also spent time revising and improving components of
our Seneca light aircraft package. This included an upgrade of the laser optical particle counters (OPC)
that were originally small portable instruments with low resolution.  Our new OPC uses Particle
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Measurement Systems (Boulder, CO) optics but with a custom pulse height analysis, computer interface
and size resolution of 256 size channels.  It provides sizing capability from 0.1 to 5um.  This overlaps
the FSSP-300 large particle probe that sizes from about 0.4 to 20um.  The new OPC recently completed
flights for measurement of size distributions including vertical profiles above Hawaii (see below) on a
larger aircraft.  It is presently undergoing post flight calibration before being reconfigured for the Seneca
aircraft package.

Sample flight observations below are chosen to illustrate aerosol vertical structure and variability
as well as seasonal differences. These include data from the original Seneca aircraft package as well as
the new OPC instrument.  The Seneca data is shown for two profiles in Fig. 5. The particle condensation
nuclei  (dominated by small particles below 0.1um) and light scattering extinction at 530nm (dominated
by particle larger that 0.1um.) are shown versus altitude. These profiles were made at (22.887N, -
158.160E-dashed line) and (22.432N, -157.663E) in October of 1998  during a ship intercomparison and
satellite overpass.  This is also the time of the year when the atmosphere is generally “cleanest” over the
North Pacific and near Hawaii. The profiles reveal real differences even though they are only about
50km apart.  Near surface light scattering measured in the lowest 300m is virtually identical for both

Figure 5. Vertical profiles of aerosol scattering coefficient and condensation nuclei for two flights near
Hawaii (shown as dashed and solid).

profiles but differs by a factor of two aloft. Enhanced cloud scatter also appears at several levels. The
smaller particle CN differ even more for both profiles but with a tendency for higher concentrations aloft
in cleaner air.

Figure 6 shows another profile on October 25 in a similar region where two nephelometers
where employed. One nephelometer (magenta) had an impactor size cut to remove particles larger than
1um generally associated with sea salt. Relative humidity (blue) is also shown and reveals the inversion
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above about 2000m.  A large difference in scattering is evident below about 300m due to coarse particle
sea-salt.  At higher altitudes the coarse particle contribute a smaller increase in extinction relative to the
submicrometer contribution and total extinction decreases with altitude steadily to our noise level (for
this instrument) of 1x10-6m-1 near 3km. Corrections to ambient extinction will involve allowance for
about 25% loss of scattering aerosol in our inlet system and corrections for hygroscopic growth from
instrument to ambient RH.  Together these will nearly double observed values and suggest a differential
optical depth below 3km on the order of 0.03 for this case.

Figure 6. Vertical profile of aerosol scattering coefficient and relative humidity. The magenta line is the
aerosol with a impactor cut at ~ 1 µm.

The October cases above can be contrasted to the springtime conditions when long range
transport from Asia introduces aerosol that spreads over the Pacific in the free troposphere.  Fig. 7
shows a descent into Hawaii from the South made on April 10, 1999.  On the left panel the dry
(30%RH) scattering extinction at 450nm(red), 550nm(green) and 750nm (blue) is plotted during the
descent and reveals multiple layers with different character.  The spread in the wavelength dependence
is generally an indication of the steepness of the size distribution between smaller and larger aerosol.
We have also indicated our interpretation of the aerosol layers based on the size distributions. The right
panel includes other parameters that help interpret the layer behavior.  These include CN (magenta),
relative humidity (blue) and the fraction of CN remaining after heating to 300C (generally  soot, dust or
sea-salt).  This ratio is low in clean regions dominated by small natural sulfates such as near 4.5km
where in spite of the CN number increase the scattering drops to 2x10-6m-1.  Above and below this layer
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Figure 7. Vertical distribution of aerosol dry scattering coefficient at three wavelengths (left
panel) and hot and cold CN and relative humidity (right panel).

are layers of high Hot/Cold CN ratios characteristic of polluted air.  Ten day back trajectories
(HYSPLIT) for these layers go back to India (upper), China (lower) while the clean layer between
remains over the central Pacific.

Composite color coded concentration isopleths are plotted in the figure 8 below for preliminary
number size distributions collected by our new OPC during the descent. Concentrations are low in the
clean layer but the dark blue shading indicates the presence of some larger dust aerosol. A stronger dust
layer is also immediately below the clean layer.  However the dust is mixed with a large number of
smaller particles with an accumulation mode diameter near 0.17.  In spite of the coarse dust the
wavelength difference in scattering remains significant.  This difference in enhanced near 3km where
the layer has little dust and increased accumulation mode pollution with number peak diameters shifted
up to 0.25um.  A transition to boundary layer air below 2km has high concentrations of small particles
as well as coarse particle sea salt.  The latter are responsible for the lack of wavelength dependence in
the scatter at these altitudes.  Although corrections for RH and proper analysis has not been done we
estimate the differential optical depth below 4km for this descent will be near  0.12, or 4 time values for
the clean part of the year.
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Figure 8.  Composite color coded aerosol number distribution isopleths as a function of height.

FUTURE PLANS:
Nearly monthly flights will be carried out to the HOT and MOBY sites. Our goal is to link our

aircraft measurement closely with in water measurements being made at the MOBY and HOT sites in
order to carry out careful ocean color calibration tests. We have a good link with the measurements
being made at the HOT site. Although flights will be carried out over the MOBY buoy when no ship
measurements are being made, we particularly seek opportunities to fly there when ship cruises are
made to the MOBY buoy and we will make it a priority to fly these events.

The MODIS ocean color initialization cruise may take place off Mexico  where different ocean
color conditions can be found (Dennis Clarke personal communication). Due to the launch delay, a new
experiment may be needed for this effort. As these plans become more clear, we are looking into the
possibility of carrying out a limited number of flights over the Mexico site using a different Piper
Seneca. A suitable aircraft must be found which can be rented and used to carry out a set measurements.
Howard Gordon has asked us to bring our polar nephelometer on his experiments and we are working
hard to finish the aircraft version so that we can provide this important measurement.

As our instrument development efforts are completed and less time is required in that area, we
will be carrying out radiation modeling efforts. The goals are to test for closure between the satellite and
aircraft measurements and to test new linearized radiation models which can speed up satellite
algorithms for aerosol retrievals. As part of this effort, we are currently finishing a new Monte Carlo
radiation model which we will run on a parallel processor at the University of Hawaii (in collaboration
with Dr. Torben Nielsen) and we are also running the 6S radiation code (thanks to Eric Vermonte).
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